A new species of Barycholos from Estado Goiás, Brasil (Amphibia, Anura, Leptodactylidae) with remarks on related genera

by John D. Lyneh*

Abstract

Barycholos savagei is named on the basis of specimens from the upper Rio Araguaia drainage in western Goiás, Brasil, more than 3200 km ESE of the distribution of its only congener, B. pulcher. In spite of the external similarities among Adenomera, Barycholos, the fuscus group of Leptodactylus, Lithodytes, and Vanzolinius, Barycholos seems most closely related to frogs of the discoidalis group of Eleutherodaclylus. Phyzelaphryne miriamae Heyer (typelocality, Igarapé Puruzinho at Rio Madeira, Estado Amazonas, Brasil) is a synonym of Eleutherodactylus nigrovittatus (Andersson).

Résumé. - Barycholos savagei est décrit d'après des spécimens qui ont été récoltés dans le bassin supérieur du Rio Araguaia (partie ouest de l’́tat de Goiás au Brésil) à plus de 3200 km est sud-est de l'aire de distribution de son seul congénère, B. pulcher. En dépit des similitudes externes entre Adenomera, Barycholos, les Leptodactylus du groupe fuscus, Lithodytes et Vanzolinius, Barycholos semble plus étroitement relié aux Eleutherodactylus du groupe discoidalis. Phyzelaphryne miriamae Heyer (localité-type: Igarapé Puruzinho dans le bassin du Rio Madeira, État de l'Amazonie au Brésil) est un synonyme d'Eleutherodactylus nigrovittatus (Andersson).

During a risit to the U.S. National Museum of Natural llistory (Washington, D. C.), I found threc specimens of a leptodactylid frog from westerı Goiás, Brasil. The specimens were incorrectly identified in that collection as Eleutherodactylus conspicillatus (Günther). As nearly as 1 can discern, the misidentification was made by the late Doris M. Cocuran but was never reported in the literature. The frogs were part of an exchange from the Muséum national d'Histoirc naturelle (Paris). The larger serics of specimens in Paris is better preserved than are the USNM specimens and was misidentified as E. binotatus (Spix). Presumably, Cocnran realized that the frogs were not E. binotalus (about whom she published an account, Cochran, 1955) but inexplicably she assigned them to E.conspicillatus.

The frogs are not Eleutherodactylus because they lack the discs on the ventral surfaces of the digit tips characteristic of Eleutherodactylus, Sminthillus, Syrrhophus, and Tomodactylus (Lyncı, 1971, 1975a, 1975b). The pectoral girdle has a caleified, style-like sternum and the omostermm is caleified posterior to the manubrium (fig. 1). Caleificd, style-like sterna purportedly characterize frogs of the subfamily Leptodactylinae (Lynch, 1971). The Goiás frogs resemble Adenomera, Barycholos, and Lithodyles in several features but the sternal architecture is unique to Barycholos.

[^0]The Goiás frogs are very similar to Barycholos pulcher (redeseribed by Heyer, 1969) Lout differ in some trivial features. The geographie hiatus ($3250-3350 \mathrm{~km}$) elegantly foeuses on our ignorance concerning Amazonian frogs. The Goias population is here named.

Barycholos savagei sp. nov.
Holotype: MNHNP 1946-328, an adult female taken between the Rio Tapirapé and Conccicao, Estado Goiás, Brasil, in 1931 by Dr. J. Vellard.

Paratypes : USNM 130184 (topotype) ; MNHNP $1946-327$ (and 327 a-k), USNM 130182-83, collected at Bananal and Rio Vermetho, Estado Goiás, Brasil, by Dr. J. Vellard.

Diagnosis : A small leptodactylid frog (four males 20.3-22.2 mm SVL, two adult females $30.4-31.2 \mathrm{~mm}$ SVL) resembling the species of Adenomera, Barycholos, Lithodytes, Vanzolinius, and fuscus group of Leptodactylus in having broad, arched vomerine odontophores, in lacking nuptial asperities (or swollen thumbs) in males, and in lacking melanophores on the large eggs. Barycholos pulcher and B. sasagei differ from Adenomera, the fuscus group of Leptodactylus, Lithodytes, and Vanzolinius in having caleified, style-like sterna which bifureate posteriorly and support separate xiphisternal elements (fig. 1). Barycholos savagei differs from B. pulcher in having a tarsal fold instead of a tarsal tubercle, in having a sharp canthus rostralis (indistinct, rounded in B. pulcher), and in lacking vocal slits and a vocal sac (sometimes absent in B. pulcher).

Fig. 1. - Ventral view of pectoral girdle of Barycholos savagei sp. nov. (MNHNP 1946-327A). Cartilage is stippled. The mesosternum (not stippled) is calcified. Scale equals 2 mm .

Description

Head as wide as body or slightly narrower than body (gravid females) ; head wider than long; snout subacuminate in dorsal view, rounded in lateral profile ; nostrils directed dorsolaterally, not protuberant ; eanthus rostralis sharp, straight ; loreal region flat, sloping
abruptly to lips; lips not flared ; interorbital space flat, broad; no eranial erests; upper eyelid lacking pungent tubereles or folds; supratympanie fold evident, ending above insertion of arm ; postrictal tubercles subeonieal (fused to form a short ridge in some examples) ; tympanum prominent, annulus distinetly elevated; tympanum separated from eye by distanee equal $1 / 3$ to $1 / 2$ tympanum length; tympanum slightly higher than long.

Choanae relatively small, round, not eoncealed by palatal shelf of maxillary arch when roof of mouth is viewed from direetly ahove ; vomerine odontophores prominent, broad, $21 / 2$ times as wide as long, lying posterior to ehoanae, each about size of a ehoana, separated on midline by distanee about 2 to $21 / 2$ times width of a ehoana; the odontophore is angled very slightly posteriad and bears a row of $8-10$ teeth; tongue longer than wide, its posterior lorder not notehed, its posterior 1/' not adherent to floor of mouth; makes lack voeal stits and voeal sae.

Fig. 2. - Palates of (A) Eleutherodactylus nigrovittatus (MNHNP 1978-2839) and (B) Barycholos savagei (MNHNP $1946-327 \mathrm{~A}$). Scale is 2 mm .

Skin of dorsum and upper surfaees of limbs finely shagreened; a narrow transverse ridge of warts on back just posterior to seapulae (not reaehing dorsolateral folds) ; low dorsolateral folds extending from eye posteriorly but disappearing at about level of saerum ; a second fold, also originating at the posterior edge of the upper eyclid, diverges ventrally below the dorsolateral fold (toward the groin), it too, is ineomplete; vent not extended in sheath ; skin below and posterolateral to vent (and extending onto undersides of thighs) bearing large areolations; all other ventral surfaces smooth; diseoidal folds distinet.

Forearm bearing ulnar tubereles, tubereles not prominent; palmar tuberele longer than wide but not indented distally (nor divided), $11 / 2$ times size of oval thenar tubercle ; supernumerary pahmar tubereles pungent, 6 to 8 in number, nearly as large as proximal subartieular tubereles; basal subartieular tubereles large, elevated, more or less round ; distal subartieular tubereles only $1 / 2$ so large as basal ones; fingers bear hints of lateral keels; fingers laeking dises and pads; first finger much longer than seeond; thumb of male neither swollen or bearing nuptial asperities.

No folds or tubereles on knee or heel; outer edge of tarsus laeking tubereles; inner edge of tarsus bearing sickle-shaped fold (and tuberele) about $2 / 5$ from distal end; inner meta-
tarsal tubercle oval (length $11 / 2$ times width), elevated, 3 times size of round, subeonieal outer metatarsal tuberele ; several supernumerary plantar tubereles present, not prominent, all mueh smaller than eonieal subartieular tuberelcs; subartieular tuberele on first toe narrowly separated from inner metatarsal tuberele; toe tips less swollen than finger tips, laeking pads and dises; toes bearing feeble lateral fringes (most evident towards bases of toes) ; heels of flexed hind legs broadly overlapping.

Brown above with indefinite brown transverse mark just posterior to seapulae (brown bar rests on a transverse ridge of warts). In several smaller individuals this brown bar is the top of an hourglass-shaped mark. Canthal streak and supratympanie stripe dark brown. Indefinite suprainguinal har (brown). Labial bars faint. Flanks brown with eream vermieulation extending up from venter. Pale area in groin eontinuous with pale venter. Some brown fleeking on throat, otherwise, all ventral surfaces eream. limbs indistinetly barred, if bars are evident they are transverse and as wide as or slightly wider than the pale interspaees. Posterior surfaees of thighs brown with a few eream fleeks; anal triangle slightly darker. In some individuals the ground eolor is gray-brown ; in these frogs a brown interorhital triangle is evident and a brown area on the shoulder tapers ventrally onto the flanks.

Measurements of holotype (in mm) : SVL 30.4 ; shank 17.2 ; hcad width 10.2 ; head length 9.8 ; upper cyelid with 2.5 ; lOD 2.9 ; tympanum Iength 2.1 ; cye length 4.0 ; eye-nostril distance 2.6. The holotype is a gravid female with strongly convoluted oviducts.

Etymology : A patronym, for Jay M. Savage, who has significantly contributed to leptodactylid systematics.

Distribution : Known only from the type specimens, collected in western Goiás state in Brasil.
Variation : Aside from the points raised in the description, B. savagei (as thus far known) is not variable. Minor differences in proportions arc summarized in table 1.

Tine belationsiups of Barycholos

The only leptodactylid frogs having sterna resembling those of the two speeies of Barycholos are some speeies of Physalaemus (see plate 2 in Barrio, 1965 and figure 2 in Parker, 1927) and some Pleurodema (Parker, 1927: 477). The sternal styles of Physalaemus and Pleurodema are distinetly osseous in eontrast to the sternal styles of Barycholos whieh are ealeified. Barycholos is further distinguished from these genera in that the vomerine odontophores are massive, partially arehed struetures lying posteriad to the ehoanae (fig. 2), whereas in Physalaemus and Pleurodema, vomerine odontophores are laeking or, if present, are small and support a elump of teeth.

Lyncir (1971, 1973) eonsidered Barycholos most elosely allied to Adenomera whereas Heyer (1969, 1975) eonsidered it most elosely allied to Eleutherodactylus. Heyer (1974a) attempted to insert Barycholos into the several elusters within the Leptodaetylinae but with little suecess and eoneluded (informally) that Barycholos was not elosely related within that assembly (whieh ineludes Adenomera). Heyer's (1974a, 1974b, 1975) analyses have a eladistie methodologie base and are thus subjeet to ready reinterpretation.

Dr. Heyer and I differ in our approaehes to the common data base in two eritieal points. I insist that if a eharacter-state is to be reeognized (or used) it must be diserete

Table 1. - Size and proportions of Barycholos savagei and Eleutherodactylus nigrovittatus. First line gives range; second gives mean ± 2 standard errors (sample size).

	SVL (in mm)	Tibia/SVL	head width/SVL.	upper eyelid/IOD	tympanum/eye	E-N/eye
Barycholos sasagei						
males	$\begin{gathered} 20.3-22.2 \\ 21.6(5) \end{gathered}$	$\begin{gathered} 55.6-60.4 \\ 57.7(5) \end{gathered}$	$\begin{gathered} 33.3-36.0 \\ 34.8(5) \end{gathered}$	$\begin{gathered} 81.8-100.0 \\ 94.7(5) \end{gathered}$	$\begin{gathered} 50.0-58.6 \\ 54.5(5) \end{gathered}$	$\begin{gathered} 71.4-79.3 \\ 73.8(5) \end{gathered}$
females	$\begin{gathered} 30.4-31.2 \\ 30.8(2) \end{gathered}$	56.6 (1)	32.9 (1)	86.2 (1)	$\begin{gathered} 52.5-56.2 \\ 54.4(2) \end{gathered}$	$\begin{gathered} 65.0-78.2 \\ 71.6(2) \end{gathered}$
juv. females	$\begin{gathered} 22.2-26.0 \\ 24.5 \pm 0.7(9) \end{gathered}$	$\begin{gathered} 59.6-63.5 \\ 60.8 \pm 1.1(7) \end{gathered}$	$\begin{gathered} 33.1-37.2 \\ 35.3 \pm 1.0(7) \end{gathered}$	$\begin{gathered} 85.2-109.1 \\ 94.7 \pm 7.3(7) \end{gathered}$	$\begin{gathered} 48.4-60.0 \\ 55.6 \pm 2.3(9) \end{gathered}$	$\begin{gathered} 70.6-83.9 \\ 79.2 \pm 2.9(9) \end{gathered}$
Fleutherodactylus nigrovittatus						
males	$\begin{gathered} 16.1-18.8 \\ 17.7 \pm 0.5(12) \end{gathered}$	$\begin{gathered} 43.6-50.6 \\ 46.9 \pm 1.0(12) \end{gathered}$	$\begin{gathered} 37.1-41.4 \\ 39.6 \pm 0.8(10) \end{gathered}$	$\begin{gathered} 61.9-80.0 \\ 69.9 \pm 5.0(7) \end{gathered}$	$\begin{gathered} 38.1-50.0 \\ 44.8 \pm 3.1(8) \end{gathered}$	$\begin{gathered} 82.6-100.0 \\ 92.2 \pm 4.6(8) \end{gathered}$
females	$\begin{gathered} \frac{90.1-22.0}{21.1} \pm 0.6(7) \end{gathered}$	$\begin{gathered} 43.6-47.1 \\ 45.4 \pm 1.0(7) \end{gathered}$	$\begin{gathered} 39.2-41.8 \\ 40.4 \pm 0,6(7) \end{gathered}$	$\begin{gathered} 65.2-82.6 \\ 73.2 \pm 5.9(6) \end{gathered}$	$\begin{gathered} 42.6-57.1 \\ 47.2 \pm 4.6(6) \end{gathered}$	$\begin{gathered} 81.5-104.8 \\ 94.8 \pm 7.5(6) \end{gathered}$

from all other character-states. Heyer (1974a, 1974b) partitioned the variation in the relationship of the posterior extent of the sphenethnoid relative to the optic foramen into three character-states even though at least some of the variation is continuous. Secondly, I insist that OTUs exhibit a single character statc. Many of the traits employed by Heyer (1974a, 1974b, 1975) suffer because although variation is discontinuous, more than one state occurs in an OTU (fig. 3). Heyer's solution to this problem (of which he was awarc) was frequently to create a state of variable states of the following form:

Fisi. 3. - Schematio of coding system employed by Heyer (1974b) for several characteristics.

The only defensible approaches are (1) to discard the characteristic, or (2) to partition the OTU. To do ncither creates an illusion.

Heyer (1974a) analyzed 50 charactcristics, recognized 2 to 5 states per character, and assigncd polaritics within each characteristic. The data were collected for 29 species of frogs. In a subsequent analysis, Heyer (1974b) uscd 17 charactcristics (including two not previously used) to analyze the rclationships among Adenomera, Leptodactylus, Lithodytes, and Vanzolinius (a gencric clustcring noted by Heyer, 1974a).

Heyer (1974a) generated two phylogenetic diagrams for leptodactyline frogs using 92 derived charactcr-states. The diagrams chustered Physalaemus, Pleurodema, and Pscudopaludicola as one unit and Adenomera, Leptodactylus, Lithodytes, and Vanzolinius as a second. In one case, Barycholos clustered with Adenomera but in the other it was loosely associated with Edalorhina. In Heyer's analyses, Edalorhina, Hydrolaelare, Limnomedusa, and Paratelmatobius did not associate with cither unit.

Heyeli also evaluated the character states so as to seriate states from best to worst. Elcven states were identified as 'best', 19 others as 'useful', 22 as 'ncutral', and 35 as 'of ncgative value' (accounting for 87 states [88 if \# 90, a single species occurrence, is added to the list of 'neutral' states]).

Heyer's ehoice (fig. 7) between his 'old phylogeny' (where Barycholos clusters with Adenomera) and his 'new phylogeny' (where Barycholos is tenuously associated with Edalorhina and thus not part of the leptodactylinc subgroup) was made because "The new phylogeny has nine fewer character state eonvergenees than the old phylogeny and the relationships among Lithodytes, the marmoratus group, and the remaining Leptodactylus are tightened up." and "This is consistent with all three groups being recognized as part of the same genus from time to time " (Heyer, 1974a: 29).

The major difficulties with this seemingly reasonable decision are: (1) where do the 9 fewer convergenees oeeur - in best, useful, neutral, or negative eharaeter states ? (2) what is the meaning of 'tightened up"? ; and (3) how germane is the observation that previous workers from time to time assoeiated a colleetion of species in a single genus?

I compared the phylogenetic diagrams and observed the following : the new phylogeny required two fewer eonvergenees for each of five states $(28,30,60,79,89)$ and one fewer for eaeh of seven others $(14,31,38,53,54,62,91)$. This is an improvement of saving 17 eonvergenees. lt also requires an extra convergenee for eaeh of ten eharacter states $(7,19,23,24,25,40,43,49,83$, and 84$)$. The net savings (table 2) is seven fewer eonvergences (I was unable to discover the other two reported by Heyer). The additions are skewed toward the 'best' extreme and the reduetions are skewed toward the negative extreme. Eaeh therefore indieates that the 'new phylogeny' is eontrary to the efforts to obtain the best phylogeny. Somewhat corroborative support for this eonclusion is gathered from one of Heyer's (1974a:38) predietions hased on the new phylogeny ["Aecording to the diagram (fig. 7) a foam nest is not required for Lithodytes, Barycholos, Edalorhina, Hydrolaetare, or Paratelmatobius..."'H. However, Edalorhina uses a foam nest in essentially the same fashion as does Physalaemus (James P. Bogart, William E. Duellman, personal communications). Therefore, although the new phylogeny requires fewer convergences, it reduces eonvergenees among the worst charaeter states and adds convergenees among the hetter eharacter states. Such an improvement is an illusion.

Heyer's second and third reasons for preference of the new over the old phylogeny are clearly related. The " tightening up " of relationships is aeeomplished by emphasizing

Table 2. - Distribution of convergences among quality categories comparing Heyer's (1974a) 'old phylogeny' with his 'new phylogeny' (and the positioning of Barycholos). Adding or reducing eonvergences is relative to the new phylogeny.

Quality category	Add convergenges	Reducf contergences
Best	23,83	
Useful	$7,19,24,25,84$	$30,54,89 *$
Neutral	43	28,79
Negative	40,49	$14,31,38,53,60,62,91$

* States in italics are those reducing convergences by two each.
those traits whieh unite what Heyer later eoneludes are the genera Adenomera, Leptodactylus, Lithodytes, and Vanzolinius back into the genus Leptodactylus sensu lato. Heyer evidently does not consider it germane that Boulenger (1898) deseribed Barycholos pulcher as a Leptodactylus where it remained until Heyer (1969) removed it. Cochran's (1938, 1955) inelusion of Paratelmatobius gaigeae in Leptodactylus does not prompt serious eonsideration that the phylogenetie diagram be engineered in sueh a way to show Paratelmatobius and Leptodactylus as a terminal bifureation. These examples are admittedly spurious but emphasize my point that the errors (if errors they be) of previous systematists are completely immaterial to the support of a given phylogenetic diagram.

If one requires both unique OTUs and unique states, one solution is to diseard Heyer's (1974b) eharaeteristies of Voeal saes, Male Thumbs, Body glands, Toe disks, Toe webs, Egg pigment, Geniohyoideus lateralis musele, Sternohyoideus origin, Graeilis minor musele. Frontoparietal fontanelle, Vomer articulation, Sphenethmoid-optie foramen, Anterior extent of sphenethmoid, and Aerocentrie ehromosomes, resulting in the 'loss' of 14 of 17 eharacteristies. Another solution is to openly examine the genera (if they are aecepted a priori, many eharaeteristies useful at one level of analysis must be disearded). [For example, if Adenomera andreae and A. marmorata are separated from A. bokermanni, A. hylaedactylus, and A. martinezi, the former group has toe pads and the latter exhibits the primitive state (i.e., no pads)].

The three remaining eharaeteristies (Sternohyoideus musele insertion, Terminal phalanges, and Diploid ehromosomes) do not impress me as adequate to generate a robust phylogenetie diagram. Heyer's (1974a) coding of variation in the form of the terminal phalanges is not eonsistent with my observations on Adenomera hylaedactyla, and the direction is contraindicated by Noble's (1917) study of ontogenetie ehanges in the degree of bifureation in Leptodactylus (and Adenomera as well). In view of the variability in diploid ehromosome number for Adenomera thus far reported from only some of the speeies (Heyer, 1974b) and the absence of data for either speeies of Barycholos, 1 am not willing to eonsider this trait signifieant. The sternohyoideus insertion trait was reported to exhibit three states (Heyer, 1974a). Heyer (1974a) recorded a derived condition in Barycholos pulcher, 3 Adenomera (andreae, bokermanni, and martinezi), Lithodytes lineatus, Mydrolaetare schmidti, and Paratelmatobius lutzi, and a more derived state in the other 2 Adenomera (hylaedactyla and marmorata) and in 3 of 5 speeies of Physalaemus. Although inspeetion of Heyer’s (1974a: 10, fig. 1) illustrations allows easy sorting of the five speeies of Adenomera into two groups, one's eonvietion that these are different charaeter states from some eonditions eoded as primitive is eroded by the same illustration.

The data set employed by Heyer ($1974 a$, 1974b) is seriously flawed by aprioristie interference and by the ensuing injudieious eoding of variability in charaeteristies. Erroneous coding of information may have eontributed to the problem (e.g., Lithodytes lineatus has dorsolateral stripes but not dorsolateral folds, it has narrow lateral fringes on the toes rather than lacking lateral fringes, it has digital pads [not dises as previously reported by Lyxcu, 1971, 1973, and so eoded by Heyer, 197fa, 1974b] but no dorsal seutes, and males laek voeal slits and a voeal sae [lleyer's " no external voeal sae " apparently means "internal vocal sae present" but is not so deseribed ; it seems unlikely that he meant " no external voeal sae" to include both "internal sac present" and "no voeal sae"]. Resolution of the relationships of the leptodaetyline genera requires (1) that the gemus

Fig. 4. - Leptodactylid pectoral girdles in ventral view. (A) Limnomedusa macroglossa [MCZ 22977-84, untagged spccimen), (B) Adenomera narmorata (КU 166464), (C) Lithodytes lineatus (MCZ 97008), (D) Vanzolinius discodactylus (KU 126241).

Leptodactylus (sensu Heyer, 1974b), and possibIy Adenomera as well, he treated as several OTUs and (2) eharaeter states be defined more precisely.

The only derived state evident in Heyer's (1974a) analysis uniting all ol the taxa here inclued in the 'leptodactyline genera' is state 83 (Hium with a well-developed dorsal erest). That state appears in a varicty of leptodactylids (Lyngh, 1971) including Eleutherodactylus nigrovitlatus, a speeies Heyer (1975) eonsidered allied to Barycholos pulcher.

Adenomera, Leptodactylus, Lithodytes, and Vanzolinius are probably very elosely related to one another. The similarities in their peetoral girdles (fig. 4, B-D) impresses this opinion on me. The long, thin osseous sternum with a spade-like xiphisternum is unique in the family and beeause it oceurs in so few otherwise similar frogs is probably derived. The uniqueness of the derivation is not on secure grounds beeause a similar arehiteeture is seen in Pseudopaludicola. The peetoral girdle of Barycholos (fig. 1) is also probably a

Fig. 5. - Ventral views of pectoral girdles of (A) Eleutherodactytus mantipus (LACM 47133), and E. nigrovittatus, (B) northeastern Perú (MNHNP 1978-2839), (C) base of Andes in Ecuador (MCZ 90312), and (D) Andean slope (1 GNM JAP 3852). Cartilage is stippled. Scale is 2 mm .
derived state but is quite unlike that scen in the leptodactylines sensu stricto (Adenomera, Leptodactylus, Lithodytes, and Vanzolinius). Heyer's (1975) vicw that Barycholos is allied to E. nigrovittatus appears consonant with all cvidence now available.

Barycholos pulcher, B. savagei, and E. nigrovittatus are similar in habitus \{size, shape, and proportions) and all three are terrestrial frogs without distinctive markings. The two Barycholos have ealeified mesostcrna and paired xiphisterna (fig. 1), broad interchoanal region of the palate (fig. 2), and no suggestion of dises on the toe pads (contrary to Lynch's. 1974, remarks). Eleutherodactylus nigrovittatus has a cartilaginous, posteriorly bifurcated sternum (fig. 5), narrow interehoanal region of the palate (fig. 2), and distinctive toe pads bearing elongate discs on the ventral surlaces of the pads but lacks any evidence of pads or dises on the fingers (fig. 6).

Fig. 6. - Palmar view of Eleutherodactylus nigrovittatus (MNHNP 1978-2839). Scale is 1 mm . Open arrows point to basal subarticular fubcrcles; closed arrows point to distal tubercles.

Tine status of Phyzelaphryne miriamae

Heyer (1977) named Phyzelaphryne miriamae on the basis of four speeimens from Igarapé Puruzinho at the Rio Madeira, Estado Amazonas, Brasil. He referred four Colomhian frogs (Yapima, Departamento Vaupés, Colombia) to P. miriamae. The proposal of the genus and species are apparently the produet of two errors (1) a possibly a priori belief in a "leaf litter adaptive complex" and (2) doing taxonomy exclusively by quantitative methods.

Frogs, like any other group of organisms, cxhibit an uneounted matrix of characteristies, only some of whieh are readily redueed to precise eharacter-state sets. Most taxonomists are familiar with the group of organisms with whieh they work and are storehouses of trivia eoneerning part or all of the speeimens they have ever examined. Aeeess to that storehouse is personal and over a lifctime a hiologist endeavors to reveal as much of that storehouse as possible ; in the interim he or she is able to provide scemingly "instant identifieations'. Quantitative methods are certainly of considerable value in taxonomy but are somewhat like keys. Simply bccause a specimen will 'key-out' in a couplet does not insure that the organism has been properly identified.

Fig. 7. - Head of adult malc Eleutherodactylus nigrovittatus (MCZ, not catalogued, Rio Caiwima, Depto. Amazonas, Colombia) showing fleshy kecl on snout. Scale is 1 mm .

Fig. 8. - Distributions of Barycholos pulcher (squares), B. savagei (triangles), and Eleutherodactylus nigrobittatus (circles). The type-locality of Phyzelaphryne miriamae is indicated by the arrow.

As I read Ileyer's (1977) deseription and iuspeeted the illustration, I realized that I had seen the frog before. Aside from eertain features (examined below), Phyzelaphryne miriamae seemed identieal to frogs I ealled Eleutherodaclylus nigrosillatus. Lyngı (1980) and Lyngh and Duellman (1980) reported that lowland populations of E. nigrovillatus consisted of mueh smaller frogs than did the populations found on the Amazonian slopes ($>1000 \mathrm{~m}$) in Ecuador. Heyer (1977) distinguished Plyyzelaphryne miriamae from Eleutheradactylus (ineluding E. nigroviltatus) beeause he thought the distal subartieular tuberele of finger IV lost. In E. nigrcoillatus, the proximal subartieular tubereles are proportionately large and are more distinet than the distal tubereles of fingers III and IV (fig. 6). The distal tubereles are only slightly more pungent (when viewed from the side) than are the supernumerary palmar tubereles ($4-5$ in number). Heyer reported dises on the fingers but his term dise $=$ pad as used here. I do not find eireumferential grooves (and thus dises) on the fingers ; in this regard, E. nigrovillatus resembles E.sulcatus. I eonsider the first finger longer than the seeond (eontrary to lleyer's statement that they are about equal in length).

The Amazonian slope populations of E. nigrovillatus differ from Amazonian Basin populations in size, in having more distinet distal subartieular tubereles on fingers III and IV, and in the size and shape of the sterna (fig. 5B, D). However, speeimens from the base of the Andes (vieinity of Puyo, Eeuador), are intermediate in sternal morphology (fig. 5C). The slope and Basin populations are inseparable on the basis of eolor pattern, coloration, alsenee of voeal shits, sac, and nuptial pads in males, and in the presenee of a fleshy keel about the snout in males (fig. 7). The ridge probably funetions in the building of a burrow. Males have long folds on the floor of the mouth but do not have vocal slits. The males referred to P. miriamae by Heyer are not available for study but are probably not eonspeeific with Phyzelaphryne miriamae whieh is here referred to the synonymy of Eleutherodactylus nigrosillatus.

Acknowledgments

Speeimens were loaned by William Defllman, Muscum of Natural History, University of Kansas (KU), John Wright, Natural History Museum of Los Angeles County (LACM), Ernest Willims, Museum of Comparative Zoology, Harvard University (MCZ), Alain Dubors and Jean Lescure, Muséum national d'Histoire naturelle, Paris (MNHNP), and Ronald Heyer, National Museum of Natural History (USNM).

LITERATURE CITED

Barrio, A., 1965. - El Genero Physalaemus (Anura, Leptodactylidae) en la Argentina. Physis, 25 : 421-448.
Boulenger, G. A., 1898. - An aceount of the reptiles and batrachians eolleeted by Mr. W. F. H. Rosenberg in western Eenador. Proc. zool. soc. Lond., 1: 107-126, pls. 10-18.
Cochran, D. M., 1938. - Diagnoses of new frogs from Brazil. Proc. biol. Soc. Wash., 51: 41-42.

- 1955. - Frogs of southeastern Brazil. Bull. U.S. Nain. Mus., 206 : xvi +423 p.

Heyer, W. R., 1969. - Studies on the genus Leptodactylus (Amphibia, Leptodactylidae) III. A redefinition of the genus Leptodactylus and a description of a new genus of leptodactylid frogs. Contrib. Sci. Los Angeles Co. Mus., 115 : 1-14.

- 1974a. - Relationships of the marmoratus species group (Amphibia, Leptodactylidae) within the subfamily Leptodactylidac. Contrib. Sci.nat. /I ist. Mus. Los Angeles Co., 253: 1-46.
- 1974b. - Vanzolinius, a new genus proposed for Leptodactylus discodactylus (Amphibia, Leptodactylidae). Proc. biol. Soc. Wash., 87 : 81-90.
- 1975. - A preliminary analysis of the intergenerie relationship of the frog fanily Leptodactylidae. Smithsonian Contrib. Zool., 199 : 1-55.
- 1977. - Taxonomie notes on frogs from the Madeira and Purus rivers, Brasil. Papeis Dep. Zool., S. Paulo, 31 : 141-162.
LyNCh, J. D., 1971. - Evolutionary relationships, ostcology, and zoogeography of leptodactyloid frogs. Misc. Publs Mus. nat. Hist. Univ. Kans., 53: 1-238.
- 1973. - The systematie status of the Colombian leptodactylid frog, Leptodactylus mantipus Boulenger. Ilerpetologica, 29:232-235.
- 1975a. - A review of the Andean leptodaetylid frog genus Phrynopus. Occas. Pap. Mus. nat. Hist. Unis. Kans., $35: 1-51$.
- 1975b. - A review of the broad-headed eleutherodaetyline frogs of South America (Leptodactylidae). Ibid., 38 : 1-46.
- 1980. - A taxonomie and distributional synopsis of the Amazomian frogs of the genus Eleutherodactylus. Am. Mus. Nopit., (2696) : 1-24.
Lynch, J. D., and W. E. Duellman, 1980. - The Eleutherodactylus of the Amazonian slopes of the Ecuadorian Andes (Anura : Leptodactylidae). Misc. Publs Mus. nut. Mist. Unio. Kans., in press.
Noble, G. K., 1917. - The systematic status of some batrachians from South Ameriea, Bull. Am. Mus. nat. Ilist., 37 : 793-814, pls. 93-96.
Parker, H. W., 1927. - A revision of the frogs of the genera Pseudopaludicola, Physalaemus, and Pleurodema. Ann. Mag. nat. Mist., 9 (20) : 450-478.

Manuscrit déposé le 1^{er} juin 1979.

[^0]: * School of Life Sciences, Thz University of Nebraska, Lincoln, Nebraska 68588 USA.

